Perfect fluid flow from granular jet impact

Wendy W. Zhang

Physics Department & James Franck Institute
University of Chicago

Institute for Computing Science (ICis)
Verification, Validation and Uncertainty Quantification
across Disciplines
Park City, Utah August 2011

Overview

Impact is familiar, important and a powerful experimental tool

mechanics tennis ball hitting court line

Hawkeye innovations

high-energy experimental physics impact → scattering → structure

Rutherford's goldfoil scattering experiment wikipedia

Overview

Impact can be surprising

4 mm diameter ethanol drop, impact speed = 4 m/s

How does air create a splash?

Granular jet impact emergence of liquid-like behavior

into thin sheet

Impact of thick jet onto small target

→ hollow conical sheet

Water jet impact

→ hollow water bell

Granular "water bell"?

Ejecta sheet angle changes with D_{Target}/D_{Jet}

reducing D_{Target}/D_{Jet}

Granular ejecta angle ψ₀ agree numerically with values for water jet → liquid-like behavior

Context: emergence of collimated ejecta

 Formation of planetismals via collison of dust aggregates

ejecta collimated within 1°

- Collimated ejecta from collision of gold ion jets at relativistic speeds
- -- Have been interpreted as evidence for a liquid quark-gluon phase

Teiser & Wurm, Mon. Not. R. Astron. Soc. 2009 Pozkanser, Voloshin, Ritter... 2008 APS Bonner prize talk Romatschke & Romatschke PRL 2007

Interior motion different from water jet impact

impact of water jet continous motion no dead zone

impact of granular jet flowing & static region

dead zone

Liquid-like ejecta co-exists with solid-like interior

Ejecta agree quantitatively despite dissimilar interior

How?

Maybe high-density granular impact generically produces liquid-like ejecta, regardless of nature of interior state

Suppose we get rid of dead zone, would we still see collimated ejecta

Need numerics

the plan

- 1. Reproduce dead zone & ejecta sheet
- 2. Varying parameters to get rid of dead zone

Simulation

jet →

QuickTime™ and a decompressor are needed to see this picture. Minimal Physics Model
perfectly rigid grains
spheres
inelastic collisions
friction between grains
friction at target

red = high speed blue = zero speed

Simulation vs. experiment

jet →

red = high speed
blue = zero speed

velocity contour comparison

Quantitative agreement height above target / target radius

Same impact dynamics

liquid-like response without dead zone

jet

2D ejecta angle changes slightly

52° (with dead zone)

→ 47° (without deadzone)

3D also slight change

jet

Collimated ejecta is generic

3D simulation

Why liquid-like ejecta?

Granular & water jet impact controlled by same idealized limit of perfect fluid flow

Perfect fluid flow contains no information

Demonstrating connection between granular impact and perfect fluid flow

granular impact inelastic / friction no cohesion 2D simulation detailed perfect fluid impact quantitative no dissipation no surface tension comparison 2D exact solution

How good should the agreement be?

expect granular ejecta to move slower

Exact solution for perfect fluid impact

velocity contour u/U₀

Velocity contours

local speed / impact speed

Inelasticity & friction

→ejecta wider than perfect fluid

Pressure contours

Quantitative agreement

Pressure contours

Larger fluctuations

Distribution of compressive forces on grains

red = large blue = zero

force chains → fluctuations about perfect fluid behavior

Why liquid-like ejecta?

Generic outcome of high density impact

→ Collimated, liquid-like ejecta

With Nicholas Guttenberg, Jake Ellowitz,

Herve Turlier, Sidney R. Nagel

Acknowledgements: Xiang Cheng, Efi Efrati, Heinrich M. Jaeger NSF-MRSEC, Keck Foundation, NSF-CBET

Thank you

What next?

Simulating dense granular impact is hard

kinetic regime (gas-like)

event-driven, hard-particle dynamics instantaneous collision exact momentum & energy conservation

★ vulnerable to numerical singularity (inelastic collapse)

standard toolkit

quasi-static, dense packing

discrete-element method elastic energy penalizing overlap

- **★** particles much softer than real materials
- ★ does not conserve energy exactly

Simulating dense granular impact is hard

kinetic regime (gas-like)

event-driven, hard-particle dynamics instantaneous collision exact momentum & energy conservation

★ vulnerable to numerical singularity (inelastic collapse)

dense flow conserving momentum & energy

quasi-static, dense packing

discrete-element method elastic energy penalizing overlap

- **★** particles much softer than real materials
- ★ does not conserve energy exactly

standard toolkit

How we simulate dense granular impact

kinetic regime (gas-like)
event-driven, hard-particle dynamics
instantaneous collision
exact momentum & energy conservation

★ vulnerable to numerical singularity (inelastic collapse)

Modified event-driven dynamics

Evolve dynamics in fixed time interval Δt At time t find all particles that will overlap during Δt Avoid overlap by pretending the particles have collided at t Evolve collisions

Iterate until no overlap occurs in Δt Evolve to next time-step

McNamara, Flekk y & M al y PRE 2000

Guttenberg arXiv:1102.2483v1

Energy budget

Dominated by mean flow

Mass & momentum budget

Nearly incompressible flow velocity field

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0} \implies \frac{\nabla \cdot \mathbf{u} = 0}{\text{constant & uniform density}}$$

High impact speed, large deceleration

- **→**neglect dissipation
- momentum transport has only inertia

pressure field
$$\rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla p = 0$$

Perfect fluid flow

Only pressure gradient No shear stress

Pressure in granular impact

Define time interval τ << impact time-scale Define sample region (~ 5 particles wide) Sum impulses I_n experienced by each particle Define stress component as

$$\sigma_{ij} \propto \frac{1}{\tau} \sum_{n} (\mathbf{I}_n \cdot \hat{\mathbf{e}}_i)(\hat{\mathbf{r}}_n \cdot \hat{\mathbf{e}}_j), \quad i, j \in \{x, y\}$$

Define pressure as

center-of-mass vector between colliding particles

$$P = (|\sigma_{xx}| + |\sigma_{yy}|)/2$$

Average over T >> impact time-scale for contours

Distribution of compressive forces on grains with dead zone present

red = large blue = zero

Granular jet impact

→ strongly coupled liquid?

When does liquid-like behavior emerge?

Emergence of liquid-like behavior gas child's view

• fills available volume

flows under shear

- fixed volume
- flows under shear

crystalline solid

- fixed volume
- resists shear

an intermediate state of matter

Emergence of liquid-like behavior gas traditional view

liquid

• flows under shear

- fixed volume
- flows under shear

crystalline solid

- fixed volume
- resists shear

attractive interaction

liquid

Cohesion between particles effectively zero

Emergence of liquid-like behavior modern view

In a liquid spatial arrangement of molecules is controlled

- mostly by strong repulsion between nearby neighbors
 - → can model molecules as hard spheres
- attraction perturbs microscopic spatial structure
 - → can model attraction by confinement
- → computation scheme yielding structure & equation of state

confine hard spheres

liquid

Velocity along centerline

Speed along center of jet

